A STIFFLY STABLE SECOND DERIVATIVE BLOCK MULTISTEP FORMULA WITH CHEBYSHEV COLLOCATION POINTS FOR STIFF PROBLEMS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Exponentially Fitted Second Derivative Extended Backward Differentiation Formula for Solving Stiff Problems

An exponentially fitted second derivative extended backward differentiation formula (SDEBDF) is derived from the class of composite, multiderivative linear multistep method with a free parameter to allow for the exponential fitting. Some numerical properties such as stability of the methods are investigated as a pair of predictor-corrector (P-C) technique based on a proposed algorithm, to which...

متن کامل

Third Derivative Multistep Methods for Stiff Systems

Abstract: In this paper, we present a class of multistep methods for the numerical solution of stiff ordinary differential equations. In these methods the first, second and third derivatives of the solution are used to improve the accuracy and absolute stability regions of the methods. The constructed methods are A-stable up to order 6 and A(α)-stable up to order 8 so that, as it is shown in th...

متن کامل

Sequential second derivative general linear methods for stiff systems

‎Second derivative general linear methods (SGLMs) as an extension‎ ‎of general linear methods (GLMs) have been introduced to improve‎ ‎the stability and accuracy properties of GLMs‎. ‎The coefficients of‎ ‎SGLMs are given by six matrices‎, ‎instead of four matrices for‎ ‎GLMs‎, ‎which are obtained by solving nonlinear systems of order and‎ ‎usually Runge--Kutta stability conditions‎. ‎In this p...

متن کامل

Efficient Embedded Formula for Chebyshev Collocation Methods

In this talk, we are concerned with embedded formulae of the Chebyshev collocation methods [1] developed recently. We introduce two Chebyshev collocation methods based on generalized Chebyshev interpolation polynomials [2], which are used to make an automatic integration method. We apply an elegant algorithm of generalized Chebyshev interpolation increasing the node points to make an error esti...

متن کامل

An Error Corrected Euler Method for Solving Stiff Problems Based on Chebyshev Collocation

In this paper, we present error corrected Euler methods for solving stiff initial value problems, which not only avoid unnecessary iteration process that may be required in most implicit methods but also have such a good stability as all implicit methods possess. The proposed methods use a Chebyshev collocation technique as well as an asymptotical linear ordinary differential equation of first-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Pure and Apllied Mathematics

سال: 2014

ISSN: 1311-8080,1314-3395

DOI: 10.12732/ijpam.v96i4.4